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ABSTRACT

This paper is concerned with estimation of the parameters of a high-
frequency VAR model using mixed-frequency data, both for the stock and
for the flow case. Extended Yule�Walker estimators and (Gaussian) maxi-
mum likelihood type estimators based on the EM algorithm are considered.
Properties of these estimators are derived, partly analytically and by simula-
tions. Finally, the loss of information due to mixed-frequency data when
compared to the high-frequency situation as well as the gain of information
when using mixed-frequency data relative to low-frequency data is discussed.
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1. INTRODUCTION

In this paper, we consider the problem of estimating the parameters of an
n-dimensional high-frequency VAR model

yt ¼ y
f
t

yst

� �
¼ A1yt− 1 þ⋯þApyt− p þ νt; t∈Z ð1Þ

using mixed-frequency data. We actually observe mixed-frequency data of
the form

y
f
t

wt

� �
ð2Þ

where

wt ¼
XN
i¼1

ciy
s
t− iþ 1 ð3Þ

where ci ∈R ; 1 <N ∈N and at least one ci ≠ 0: Here, the nf-dimensional,
say, fast component yt

f is observed at the highest (sampling) frequency
t∈Z and the ns-dimensional slow component wt is observed only for
t∈NZ, that is, for every N-th time point. In this paper, we assume that
nf ⩾ 1: Equation (3) represents the general case. For the case of flow data
we have that ci ¼ 1; for i ¼ 1;…;N; whereas for the case of stock data we
have that c1 ¼ 1 and ci ¼ 0; for i ¼ 2;…;N:

Throughout we assume the following for the high-frequency VAR
model: The system parameters Ai ∈R

n× n satisfy the stability assumption

det a zð Þð Þ≠ 0 zj⩽ 1j ð4Þ

where a zð Þ ¼ I −A1z−⋯−Apz
p and the polynomial order p is given or speci-

fied. Here, z is used for the complex variable as well as for the backward shift
on the integers Z: We assume that νtð Þ is white noise and we only consider
the stable steady-state solution yt ¼ a zð Þ− 1νt: The rank q of the innovation
covariance matrix Σν ¼ E νtνTt

� �
is given or specified, where q⩽ n holds.

When the innovation matrix Σν is nonsingular, the system is called regular,
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otherwise it is called singular. Singular autoregressive systems are important
as models for latent variables and the corresponding static factors in general-
ized dynamic factor models (GDFMs) (see Deistler, Anderson, Filler,
Zinner, & Chen, 2010; Forni, Hallin, Lippi, & Reichlin, 2000; Forni, Hallin,
Lippi, & Zaffaroni, 2015; Stock & Watson, 2002). They are also important
for DSGE models for the case where the number of shocks is strictly smaller
than the number of outputs (see Komunjer & Ng, 2011).

The parameter space for the high-frequency models considered is
given by

Θ ¼ A1;…;Ap

� �
det a zð Þð Þ≠ 0; jzj⩽ 1
�� �

× Σν Σν ¼ ΣT
ν ;Σν ⩾ 0; rk Σνð Þ ¼ q

�� ���
where rk Að Þ denotes the rank of the matrix A. Since Σν is of rank q⩽ n; we

can write Σν ¼ bbT ; where b is an n× qð Þ matrix. Accordingly, νt ¼ bεt;
where E εtεTt

� � ¼ Iq: For given Σν; b is unique up to postmultiplication by

an orthogonal matrix. For a particular unique choice of b, see Filler (2010).
Model (1) can be written in companion form as

yt
yt− 1

⋮
yt− pþ 1

0
BB@

1
CCA

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
xtþ 1

¼
A1 … Ap− 1 Ap

In
⋱

In 0

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

yt− 1

yt− 2

⋮
yt− p

0
BB@

1
CCA

|fflfflfflfflffl{zfflfflfflfflffl}
xt

þ
b

0

⋮
0

0
BB@

1
CCA

|fflffl{zfflffl}
B

εt ð5Þ

yt ¼ A1· · · Ap

� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C

xt þ bεt ð6Þ

The solutions of Eq. (1) and of Eqs. (5), (6) are of the form

yt ¼ a zð Þ− 1νt ¼ a zð Þ− 1bεt ¼ C I −Azð Þ− 1Bzþ b
� �

εt ð7Þ

where k zð Þ ¼ a zð Þ− 1 ¼P∞
j¼0kjz

j is the transfer function from νtð Þ to ytð Þ and
k zð Þb ¼ C I −Azð Þ− 1Bzþ b is the transfer function from εtð Þ to ytð Þ:

Due to the mixed-frequency structure of the observed data, the popula-
tion second moments
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γff hð Þ ¼ E y
f
tþ h yft
� �T
 �

; h∈Z

γwf hð Þ ¼ E wtþ h yft
� �T
 �

; h∈Z

γww hð Þ ¼ E wtþ h wtð ÞT� �
; h∈NZ ð8Þ

can be directly estimated. For estimation of the high-frequency parameters,
identifiability is a core issue. In our context, identifiability means that the
parameters of the high-frequency system can be uniquely obtained from the
population second moments given in Eq. (8). As has been discussed in
Anderson et al. (2012, 2015), identifiability can only be guaranteed generic-
ally. This means that we can guarantee identifiability on a set containing an
open and dense subset of the parameter space. We call this g-identifiability.
For the remaining part of the paper, unless the contrary is stated explicitly,
we assume that the true system is in the identifiable set.

The paper is organized as follows: In Section 2, we introduce extended
Yule�Walker estimators, first for the case of stock variables (see Chen &
Zadrozny, 1998) and then for the general case (3), as well as a (Gaussian)
maximum likelihood type estimator based on the EM algorithm. Note that
these estimators do not necessarily lead to a stable system, nor do they
necessarily give a positive (semi)-definite innovations covariance matrix of
rank q. For these reasons, in Section 3, algorithms are discussed for trans-
forming these estimators to a stable and positive (semi)-definite form,
respectively. In Section 4, the asymptotic properties of the extended
Yule�Walker estimators are derived. In Section 5, a simulation study is
presented, in which we compare the extended Yule�Walker estimators
with the maximum likelihood type estimator. Furthermore, the information
loss due to mixed-frequency data compared to high-frequency data on the
one hand and the information gain from using mixed-frequency data com-
pared to low-frequency data on the other hand are discussed.

2. MIXED-FREQUENCY ESTIMATORS

2.1 Extended Yule�Walker Estimators: The Stock Case

In Chen and Zadrozny (1998), extended Yule�Walker (XYW) equations
have been proposed for estimation of the high-frequency parameters from

46 LUKAS KOELBL ET AL.

D
ow

nl
oa

de
d 

by
 L

uk
as

 K
oe

lb
l A

t 2
3:

14
 1

2 
Ja

nu
ar

y 
20

16
 (

PT
)



mixed-frequency stock data. On a population level, these XYW equations
are of the form

E yt y
f
t− 1


 �T
;…; yft− np


 �T� �� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z1

¼ A1;…;Ap

� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A

E

yt− 1

⋮
yt− p

0
@

1
A y

f
t− 1


 �T
;…; yft− np


 �T� �2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z0

ð9Þ

where Z0 ∈R
np× nf np and Z1 ∈R

n× nf np: In Anderson et al. (2012, 2015), it has
been shown that Z0 has full row rank np on a generic subset of the para-

meter space. Thus, in this case, A1;…;Ap

� �
are uniquely determined from

A1;…;Ap

� � ¼ Z1Z
†
0 ; where Z†

0 ¼ ZT
0 Z0Z

T
0

� �− 1
is the Moore�Penrose

pseudo-inverse of Z0:
XYW estimators are obtained by replacing the population second

moments by their sample counterparts:

γ̂ ff hð Þ ¼ 1

T

XT − h

t¼1

y
f
tþ h yft
� �T

; h⩾ 0 ð10Þ

γ̂ ff hð Þ ¼ γ̂ ff − hð ÞT ð11Þ

γ̂wf hð Þ ¼ 1

T=N

Xt2
t¼t1

wNt y
f
Nt− h


 �T
ð12Þ

where the estimator of γwf hð Þ has only (approximately) 1=N-th of the sum-
mands compared to the estimator of γff hð Þ due to the missing observations and

t1 ¼
1 N > h

h

N

6664
7775þ 1 N ⩽ h ; t2 ¼

T
N

� �
h⩾ 0

T þ h

N

6664
7775 h< 0

8>>>><
>>>>:

8>>>><
>>>>:
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For the case of stock variables considered here, we have wNt ¼ ysNt:
Let Ẑ 0 and Ẑ 1 denote the corresponding estimators of Z0 and Z1; respec-

tively. If Z0 has full row rank and if we assume that its estimator is consis-
tent, Ẑ 0 will be also of full row rank, from a certain T0 onwards. The XYW
equations with Z0 and Z1 replaced by Ẑ 0 and Ẑ 1 are overdetermined in gen-
eral and can be solved in different ways. We may define the XYW estima-
tor as follows:

ÂXYW ¼ Ẑ 1Ẑ
†

0 ð13Þ

where Ẑ
†

0 ¼ Ẑ
T

0 Ẑ 0Ẑ
T

0


 �− 1

is the Moore�Penrose pseudo inverse of Ẑ 0:
Alternatively, the generalized method of moments (GMM) estimator (see
Hansen, 1982), which is defined as

ÂGMM ¼ arg
A∈R

n× np

min vec Ẑ 1 −AẐ 0

� �T
QTvec Ẑ 1 −AẐ 0

� � ð14Þ

can be used. Here, QTð Þ is a sequence of random weighting matrices which
converges almost surely to a constant, symmetric, positive-definite matrix
Q0: Let vec :ð Þ and ⊗ denote columnwise vectorization and the Kronecker
product, respectively. In addition, we assumed that Ẑ 0 has full row rank
and that QT is nonsingular. The solution of Eq. (14) is

vec ÂGMM

� � ¼ Ẑ 0⊗In
� �

QT Ẑ
T

0⊗In


 �
 �− 1

Ẑ 0⊗In
� �

QT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĝ

†

QT

vec Ẑ 1

� �

Note that if we set QT ¼ In2pnf ; we obtain the XYW estimator.
It may be useful to exploit the information contained in covariances

corresponding to higher-order lags in order to improve the quality of the
estimator: For k⩾ 0; we obtain

E yt y
f
t− 1


 �T
;…; y

f
t− np− k


 �T� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z1;k

¼ A1;…;Ap

� �
E

yt− 1

⋮
yt− p

0
@

1
A y

f
t− 1


 �T
;…; y

f
t− np− k


 �T� �0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z0;k

ð15Þ

48 LUKAS KOELBL ET AL.

D
ow

nl
oa

de
d 

by
 L

uk
as

 K
oe

lb
l A

t 2
3:

14
 1

2 
Ja

nu
ar

y 
20

16
 (

PT
)



Note that the XYW estimators do not use the information contained in the
autocovariances of the slow process, which can be directly observed.

A symmetric estimator Σ̂ν for Σν is obtained from

vec Σ̂ν

� � ¼ G⊗Gð Þ I npð Þ2 − Â⊗Â

 �
 �− 1

GT⊗GT
� �� �− 1

vec γ̂ 0ð Þð Þ ð16Þ

where G ¼ In; 0;…; 0ð Þ and Â is the companion form corresponding to
Eq. (5) with the true parameters replaced by their estimators. Here, we

assumed that G⊗Gð Þ I npð Þ2 − A⊗Að Þ

 �− 1

GT⊗GT
� �� �

is nonsingular, an

assumption which is generically fulfilled (see Anderson et al., 2015).

2.2 Extended Yule�Walker Estimators: The General Case

Let

zt ¼
XN
i¼1

ciyt− iþ 1 ¼
XN
i¼1

ciy
f
t− iþ 1

wt

0
@

1
A ¼ z

f
t

zst

� �
ð17Þ

and γz hð Þ ¼ E ztz
T
t− h

� �
: For convenience, we assume that cN ≠ 0: In this case,

we obtain another form of the XYW equations as follows:

E zt y
f
t−N


 �T
;…; y

f
t− np−Nþ 1


 �T� �� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z
g

1

¼ A1;…;Ap

� �
E

zt− 1

⋮
zt− p

0
@

1
A y

f
t−N


 �T
;…; y

f
t− np−Nþ 1


 �T� �2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z
g

0

ð18Þ
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In Koelbl (2015), it is shown that the matrix Z
g
0 has full row rank on a

generic subset of the parameter space and thus the XYW estimator in the
general case is defined as

Â
g

XYW ¼ Ẑ
g

1 Ẑ
g

0


 �†
ð19Þ

where Ẑ
g

0 and Ẑ
g

1 are the estimators for Z
g
0 and Z

g
1 ; respectively.

Let m¼max p;Nð Þ;Hm¼ c1In;c2In;…;cNIn;0n×n m−Nð Þ
� �

;Gm¼ In;0n×n m−1ð Þ
� �

,
andAm be the companion form with the system parameters

Am
i ¼ Ai i ¼ 1;…; p

0 i ¼ pþ 1;…;m

�

Then it is easy to see that

vec γz 0ð Þ� � ¼ Hm⊗Hmð Þ I nmð Þ2 − Am⊗Amð Þ

 �− 1

GT
m⊗GT

m

� �� �
vec Σνð Þ ð20Þ

Again in Koelbl (2015), it is shown that the first term on the right-hand
side of Eq. (20) is generically nonsingular. Thus, we can define the sym-
metric estimator for the noise parameters as

vec Σ̂ν

� � ¼ Hm⊗Hmð Þ I nmð Þ2 − Âm⊗Âm


 �
 �− 1

GT
m⊗GT

m

� �� �− 1

vec γ̂ z 0ð Þ� �

2.3 Maximum Likelihood Estimation and the EM Algorithm

First, again, we consider the case of stock variables. Throughout this sec-
tion we assume, for the sake of simplicity, that q = n, that is, the AR pro-
cess is regular. For a given N, we define the blocked observed process

~yt ¼ yTt ; y
f
t− 1


 �T
;…; y

f
t−Nþ 1


 �T� �T

; t∈NZ (see Anderson et al. 2015). The
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(Gaussian) log-likelihood (ignoring the constant) of observations times −2
is given by (see Hannan & Deistler, 2012)

~LT θð Þ ¼ 1

T
log det ~ΓT θð Þ� �� �þ 1

T
~Y
T

obs
~ΓT θð Þ� �− 1 ~Y obs ð21Þ

where ~Y obs ¼ ~yTN ; ~y
T
2N ;…; ~yTT

� �T
are the observed data and ~ΓT θð Þ ¼

E ~Y obs θð Þ ~YT

obs θð Þ

 �

: Note that in the latter expression, the random variables

~Y obs θð Þ are considered to be generated by an arbitrary parameter θ∈Θ: Also

note that ~ΓT θð Þ is a square matrix with dimension nþ N − 1ð Þnf
� �

T=N; which
is in general a very large matrix in block Toeplitz form and accordingly its
inversion may cause problems, even when taking advantage of its block
Toeplitz structure (see Wax & Kailath, 1983).

The EM algorithm (MLE-EM) is an iterative procedure to find the mini-
mizer of ~LT θð Þ: The idea of this algorithm is to successively minimize the
conditional expectation of

LT θð Þ ¼ 1

T
log det ΓT θð Þð Þð Þ þ 1

T
YT ΓT θð Þð Þ− 1Y ð22Þ

of the complete-data Y ¼ yT1 ;…; yTT
� �T

given the observed data ~Y obs: Here,
ΓT θð Þ ¼ E Y θð ÞYT θð Þ� �

where now the random variables Y θð Þ are generated
by an arbitrary parameter value θ∈Θ: We now follow Shumway and
Stoffer (1982): Observe that for the stock case the mixed-frequency data
can be represented by a time variable state-space system

xtþ 1 ¼ Axt þBεt
y×
t ¼ Gtxtþ 1

ð23Þ

where xt ¼ yTt− 1;…; yTt− p


 �T
and GNt ¼ In; 0;…; 0ð Þ; GNt− k ¼ Inf ; 0;…; 0

� �
for k ¼ 1;…;N − 1: The vector y×

t contains only observable components.

Throughout this section, we assume that the innovations νt in Eq. (1)
are Gaussian white noise and that x1 ∼N np 0;V1ð Þ is independent from
ν1;…; νT : The complete-data log-likelihood, when modified with respect to
the initial values (and using the same symbol as in Eq. (22)), can be factor-
ized such that
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LT τð Þ ¼ log det V1ð Þð Þ þ xT1V
− 1
1 x1

þ T log det Σνð Þð Þ þ
XT
t¼1

Gxtþ 1 −Axtð ÞTΣ− 1
ν Gxtþ 1 −Axtð Þ

where G ¼ In; 0;…; 0ð Þ and τ ¼ vec Að ÞT ; vech Σνð ÞT ; vech V1ð ÞT� �T
:

The algorithm starts with an initial value τ 0ð Þ; for example, where
Â1;…; Âp

� �
and Σ̂ν are XYW estimates and where V1 is the corresponding

solution of the Lyapunov equations, that is, Γp ¼ AΓpAT þBBT where
Γp ¼ E xtx

T
t

� �
: Let τ kð Þ be the estimate at the k-th iteration, iteration kþ 1 is

as follows:

E-step. The expected complete-data log-likelihood conditional on ~Y obs; say
Q τjτ kð Þ� � ¼ Eτ kð Þ LT τð Þj ~Y obs

� �
; where the notation Eτ kð Þ indicates that

the conditional expectation is taken corresponding to the para-
meter τ kð Þ; is given by

Q τjτ kð Þ� �¼ log det V1ð Þð Þ þ tr V − 1
1 x1jTxT1jT þP1jT

 �
 �

þT log det Σνð Þð Þ
þ tr Σ− 1

ν GS11GT þAS00A
T −GS10A

T −AST10GT
� �� �

with

S00 ¼
XT − 1

t¼1

xtjTxTtjT þPtjT

 �

S11 ¼
XT
t¼2

xtjTxTtjT þPtjT

 �

S10 ¼
XT
t¼2

xtjTxTt− 1jT þPt;t− 1jT

 �

where

xtjT ¼ Eτ kð Þ xtj ~Y obs

� �
PtjT ¼ Eτ kð Þ xt − xtjT

� �
xt − xtjT
� �T

Pt;t− 1jT ¼ Eτ kð Þ xt − xtjT
� �

xt− 1 − xt− 1jT
� �T
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They can be calculated by means of the Kalman filter or other smoothing
algorithms (see Shumway & Stoffer, 1982).

M-step. Determine τ kþ 1ð Þ by minimizing the expected conditional likeli-
hood, that is, τ kþ 1ð Þ ¼ argminτQ τjτ kð Þ� �

: The parameter updates
are given by

A kð Þ ¼ GS10S
− 1
00

Σ kð Þ ¼ T − 1 GS11GT −GS10S
− 1
00 ST10GT

� �
V

kð Þ
1 ¼ P1jT þ x1jTxT1jT

The algorithm stops if the relative decrease of the log-likelihoods of
observations is below a prespecified threshold. Here, we do not discuss con-
vergence properties of the EM algorithm.

In the general case, the state-space system has to be written as (see also
Mariano & Murasawa, 2010)

xmtþ 1 ¼ Amx
m
t þBmεt

y×
t ¼ Gm

t x
m
tþ 1

ð24Þ

where xmt ¼ yTt− 1;…; yTt−m

� �T
; Bm ¼ bT ; 0n× n m− 1ð Þ

� �T
; Gm

Nt− k ¼ Inf ; 0;…; 0
� �

for k ¼ 1;…;N − 1 and

Gm
Nt ¼

Inf 0 ⋯ 0 0 0nf × n m−Nð Þ
0ns × nf c1Ins ⋯ 0 cNIns 0ns × n m−Nð Þ

� �

The algorithm described above for the stock case can be analogously
applied to the general case with the state-space model (5), (6) modified in a
straightforward way.

3. PROJECTING THE MF ESTIMATORS ON THE

PARAMETER SPACE

It is well known that in the high-frequency case, the Yule�Walker estima-
tor always leads to a stable AR polynomial, provided that Γ̂p > 0 holds,
where Γ̂p is the high-frequency estimator of Γp > 0 (see Deistler & Anderson
2010). Furthermore, in the high-frequency case, the estimated covariance
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matrix of the noise is positive definite. In general, the XYW/GMM estima-
tors do not fulfill these desirable properties and the same is true for the esti-
mators obtained from the EM algorithm. Indeed in many simulations such
a situation occurs. Consequently, in a second step, one has to check
whether the estimated parameters, say θ̂; lie in the parameter space Θ. If θ̂
is not contained in this space, the question of finding a θ̂P ∈Θ; which is suf-
ficiently close to θ̂; arises. In this paper, we separate this problem in two
sub-problems: The first problem is to find a stable polynomial matrix close
to an unstable estimator of a zð Þ: The second problem is to find a positive
(semi)-definite covariance matrix of rank q, which is close to an indefinite
(symmetric) estimator of Σν:

3.1 Stabilization of the Estimated System Parameters

In this section we commence from an unstable estimate for the system para-
meters, say Âun ∈R

n× np; corresponding to âun zð Þ; such that there exists a
z0∈C; jz0j⩽1; and det âun z0ð Þð Þ¼0: As S¼ A1;…;Ap

� �
det a zð Þð Þ≠0; zj⩽1gj
���

is
an open set, there exists no best approximation of such an Âun; for instance
in Frobenius norm, by an element of S. In addition, in general, S is non-
convex. We consider the problem of finding

inf
A∈ S

‖A− Âun‖
2 ð25Þ

There exists a substantial literature dealing with finding the “nearest”
stable polynomial both for the univariate (see Combettes & Trussell, 1992;
Moses & Liu, 1991; Orbandexivry, Nesterov, & van Dooren, 2013;
Stoica & Moses, 1992) and the multivariate case (see Balogh & Pintelon,
2008; D’haene, Pintelon, & Vandersteen, 2006). An interesting way to solve
the univariate stabilization problem is proposed in Orbandexivry et al.
(2013) using the so-called Dikin Ellipsoid. We will repeat the most impor-
tant steps of this procedure and generalize it to the multivariate case, which
can be easily done. We point out that all these methods need a stable initial
value.

Problem (25) can be reformulated as in Orbandexivry et al. (2013) to

inf
A;P

1

2
‖A− Âun‖

2
F ð26Þ
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where minimization with respect to P runs over P ¼ PT > 0; P−APAT > 0;
with A the companion form of A. For a fixed P ¼ PT > 0; we can define the
set

SP ¼ A∈R
n× np : P−APAT > 0;A is the companion form of A

� �
⊂ S

and the function bP Að Þ ¼ − log det P−APAT
� �� �

; which is a barrier func-

tion. It follows from theorem 5 in Orbandexivry et al. (2013) that for A∈ S;

P ¼ PT > 0 such that P−APAT > 0 and any 0⩽ α< 1; the so-called Dikin

Ellipsoid E P;A; αð Þ ¼ Aþ H ∈R
n× np : b″P Að ÞH;H

� �
⩽ α

� �
is a subset of SP

where A;Bh i ¼ tr ABT
� �

and b″P Að ÞH;H
� �

is the second derivative of bP(A) in

a given direction H. Now, for given A and α, the question arises which P
should be chosen such that E P;A; αð Þ is maximized. In Orbandexivry et al.
(2013) the authors argue that a good choice, say P�; is given by solving

Q− 1 −ATQ− 1A ¼ npInp ð27Þ

P� −AP�AT ¼ Q ð28Þ

We are now in a position to formulate a new, restricted optimization pro-
blem for a given 0⩽ α < 1; A∈ S and a corresponding P�:

min
H

1
2
‖AþH − Âun‖

2
F ð29Þ

where H is such that b″P� Að ÞH;H
� �

⩽ α: Note that we now have a convex
optimization problem. It can be shown that b″P� Að ÞH;H

� �
⩽ α can be rewrit-

ten as vec Hð ÞTBvec Hð Þ⩽ α; where

1

2
B ¼ P�⊗GQ− 1GT

� �þ P�ATQ− 1AP�⊗GQ− 1GT
� �

þ P�ATQ− 1GT⊗GQ− 1AP�� �
Kn;np ð30Þ

and Kn;np is a commutation matrix, see Magnus and Neudecker (1979). It is
easy to conclude that the matrix B is symmetric positive definite and thus
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can be factorized as B ¼ UDUT ; where D is a diagonal matrix with positive
entries di, i ¼ 1;…; n2p; and U is an orthonormal matrix. The solution of
Eq. (29) can be derived (see Orbandexivry et al., 2013, p. 1199) by finding
the root of the function

ψ λð Þ ¼
Xn2p
i¼1

di e
T
i U

TvecðÂun −AÞ� �2
1þ λdið Þ2 − α ¼ 0 ð31Þ

with respect to λ∈ 0;∞ð Þ; where ei is the i-th unit vector, and then substitut-
ing into

vec Hð Þ ¼ In2p þ λB
� �− 1

vec Âun −A
� � ð32Þ

It is worth mentioning that there exists a unique λ and therefore a unique H.
A stable initial estimator may be obtained, for example, by reflecting the

unstable roots of âun zð Þ on the unit circle (see Lippi & Reichlin, 1994). The
whole stabilization procedure has to be iterated.

3.2 Positive (Semi)-Definiteness of the Noise Covariance Matrix

Under assumptions that guarantee consistency of the sample second
moments and the system parameters A, Eq. (16) gives a consistent estima-
tor for Σν: This estimate is symmetric but may not be positive (semi)-defi-
nite and of rank q. Consider

inf
Σps ∈D

‖Σps − Σ̂ν‖
2
F ð33Þ

where D ¼ Σν ∈R
n× nj Σν ¼ ΣT

ν ;Σν ⩾ 0; rk Σνð Þ ¼ q
� �

: The matrix Σ̂ν can be
represented as Σ̂ν ¼ QΛQT where Λ is the diagonal matrix containing the
eigenvalues λi in descending order and Q is an orthonormal matrix contain-
ing the corresponding eigenvectors. For simplicity, we assume that the q-th
and the qþ 1ð Þ-th eigenvalue are distinct.

To obtain an arbitrarily close solution of problem (33), we define
Σ̂ps ¼ QΛþQT ; where Λþ is a diagonal matrix with entries
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λþ
i ¼ max λi; εð Þ i ¼ 1;…; q

0 i ¼ qþ 1;…; n

�

for sufficiently small ε > 0: Note that by the so-called Wielandt�Hoffman

Theorem (see Hoffman & Wielandt, 1953)
Xn

i¼1
λAi − λBi
� �2

⩽ ‖A−B‖2F

holds for symmetric matrices A;B∈R
n× n; where λAi and λBi are the corre-

sponding eigenvalues in a descending order, respectively. Thus Σ̂ps gives an

arbitrarily close solution of (33).

4. ASYMPTOTIC PROPERTIES OF THE XYW/GMM

ESTIMATORS

In this section, we derive the asymptotic properties of the XYW estimator
as well as of the generalized method of moments estimators. Whereas under
suitable assumptions the Yule�Walker estimator has the same asymptotic
covariance as the maximum likelihood estimator in the high-frequency case
and thus is asymptotically efficient, this is not the case for the XYW/GMM
estimators. The asymptotic distribution of XYW/GMM estimators is
derived along the idea of first deriving the asymptotic distribution of the
sample second moments of the observations, that is, deriving Bartlett’s for-
mula for the mixed-frequency case, and then, in a second step, linearizing
the function attaching the parameters to the second-order moments of the
observations. Throughout this section, we additionally assume that νt in
Eq. (1) is independent identically distributed, νtð Þ∼ IIDn 0;Σνð Þ; and that

η ¼ E νtνTt ⊗νtνTt
� �

exists. For notational simplicity, we write ytð Þ as

yt ¼
X∞

j¼−∞
kjνt− j; where kj ¼ 0 for j< 0: Note that ztð Þ can be analogously

represented as zt ¼
X∞

j¼−∞
~kjνt− j; where ~kj ¼

XN

i¼1
cikj− iþ 1: For conveni-

ence, we restrict ourselves mainly to the case of stock variables, that is,
wNt ¼ ysNt: The general case will be discussed at the end of the section. In

the following, we will use the partition kj ¼ k
f
j

ksj

� �
; where kj

f denotes the

first nf and kj
s the last ns rows of kj, respectively.

Let κ¼η−vec Σνð Þvec Σνð ÞT− Σν⊗Σνð Þ−Kn;n Σν⊗Σνð Þ; γzf f hð Þ¼E z
f
t y

f
t


 �T� �
¼

γff hð Þ and γ̂ z
f f hð Þ be the corresponding estimator. We denote convergence in

distribution by →d and convergence in probability by →
p
:
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Theorem 1. Under the assumptions stated above in this section, we obtain

ffiffiffiffi
T

p
vec γ̂ z

f f 0ð Þ

 �

vec γ̂wf 0ð Þ� �
⋮

vec γ̂ z
f f sð Þ


 �
vec γ̂wf sð Þ� �

0
BBBBBB@

1
CCCCCCA−

vec γz
f f 0ð Þ


 �
vec γwf 0ð Þ� �

⋮
vec γz

f f sð Þ

 �

vec γwf sð Þ� �

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA →

d N h 0;Σγ

� �

where h ¼ sþ 1ð Þnnf and s∈N : Σγ is obtained as described in Lemmas
1�3 in the appendix.

The proof of Theorem 1 is also given in the appendix.

Remark 1. The last theorem can be extended to any lag including nega-
tive ones. Indeed, we will use lags 1− p;…; npð Þ for the XYW and GMM
estimator. Also note that the assumption that the innovations are i.i.d.
can be relaxed, see, for example, Hall and Heyde (1980) and Francq and
Zakoian (2009).

Remark 2. Note that we do not distinguish between singular and non-
singular normal distributions. For a detailed discussion about singular
normal distributions, see Khatri (1961), Rao (1972), and Anderson (1994).

Having obtained the asymptotic distribution of the covariance estima-
tors, we have to linearize the mapping attaching the system parameters
to the second moments of the observations. The next theorem derives
the asymptotic distribution of the XYW/GMM estimators and is related
to Gingras (1985). Let ΘXYW be the generic set of the system and noise
parameters where Z0 has full row rank np.

Theorem 2. Let ytð Þ be the output of system (1) with inputs
νtð Þ∼ IIDn 0;Σνð Þ; θ∈ΘXYW and assume that η ¼ E νtνTt ⊗νtνTt

� �
exists.

Then the GMM estimator

vec ÂGMM

� � ¼ Ẑ 0⊗In
� �

QT Ẑ
T

0⊗In


 �
 �− 1

Ẑ 0⊗In
� �

QTvec Ẑ 1

� �
¼ Ĝ

†

QT
vec Ẑ 1

� �
is asymptotically normal with zero mean and a covariance matrix given by

ΣGMM ¼ G†
Q0
JP


 �
Σγ G†

Q0
JP


 �T
ð34Þ
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that is,

ffiffiffiffi
T

p
vec ÂGMM

� �
− vec Að Þ� �

→
d N n2p 0;ΣGMMð Þ ð35Þ

Here, QT →
p
Q0 where Q0 is constant, symmetric, and positive definite

and Σγ is the asymptotic covariance of the mixed-frequency covariances,
described in Theorem 1, for the lags − pþ 1;…; npð Þ: Furthermore,

G†
Q0
¼ Z0⊗Inð ÞQ0 ZT

0⊗In
� �� �− 1

Z0⊗Inð ÞQ0

J¼
D 0n× n 0n× n

0n× n D ⋱ ⋮
⋮ ⋱ ⋱ 0n× n

0n× n ⋯ 0n× n D

0
BB@

1
CCA∈R

n2pnf × n nþ 1ð Þnf p

D¼ −Ap 0n× nf − 1ð Þn −Ap− 1 0n× nf − 1ð Þn


… −A10n× nf − 1ð ÞnIn0n× nf − 1ð Þn

�

and the permutation matrix P is given as P ¼ I nþ 1ð Þp⊗P2

� �
; where

P2 ¼ Inf⊗
Inf

0ns × nf

� �
; Inf⊗

0nf × ns

Ins

� �� �

Proof. We commence with the observation that

ffiffiffiffi
T

p
vec ÂGMM

� �
− vec Að Þ� �

¼ ffiffiffiffi
T

p
Ĝ

†

QT
vec Ẑ 1

� �
− Ĝ

†

QT
Ẑ
T

0⊗In


 �
vec Að Þ


 �
¼ ffiffiffiffi

T
p

Ĝ
†

QT
vec Ẑ 1 −AẐ 0 −Z1 þAZ0

� �
¼ ffiffiffiffi

T
p

Ĝ
†

QT
Ipnnf⊗ In −A

� �
 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J1

vec
Ẑ 1 −Z1
Ẑ 0 −Z0

� �

¼ ffiffiffiffi
T

p
Ĝ

†

QT
J1J2|{z}
J

P
vec γ̂ z

f f ið Þ

 �

vec γ̂wf ið Þ� �
 !

− vec γz
f f ið Þ


 �
vec γwf ið Þ� �

 ! !
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for i ¼ − pþ 1;…; np; where J2 is a reordering matrix. Since under our
assumptions, the sample autocovariances are consistent estimators and
QT →

p
Q0; the same is true for Ĝ

†

QT
JP, that is, Ĝ

†

QT
JP →

p
G†

Q0
JP: Theorem

1 and Slutsky’s Lemma then directly lead to the result of the theorem.’

Remark 3. It is well known that under our assumptions the asymptotic
covariance for the high-frequency Yule�Walker estimator is of the form
Γ− 1
p ⊗Σν


 �
(see Hannan, 1970; Lütkepohl, 2005) and thus, in this case, the

fourth moment of the innovations does not influence the asymptotic covar-
iance of the parameter estimates. In the case discussed here, the fourth
moment of the innovations does not vanish under linearization in general.

Having obtained the expression for the asymptotic covariance, we can
determine the asymptotically optimal weighting matrix for the GMM
estimator.

Theorem 3. Under the assumptions of Theorem 2, the optimal asympto-
tic weighting matrix for the GMM estimator is

Q�
0 ¼ JPΣγP

TJT
� �− 1 ð36Þ

and the corresponding asymptotic covariance is given by

Σ�
GMM ¼ Z0⊗Inð ÞQ�

0 ZT
0⊗In

� �� �− 1 ð37Þ

For the XYW estimator, where Q0 ¼ In2pnf ; the asymptotic covariance is
given by

ΣXYW ¼ Z†
0

� �T⊗In


 �
JPΣγP

TJT Z†
0⊗In

� � ð38Þ

Proof. The proof of the theorem directly follows from theorem 3.2 in
Hansen (1982). ’

Remark 4. Using the blocked process for the AR(1) case as described in
Anderson et al. (2015) it is easy to derive the asymptotic covariance
matrix of the maximum likelihood estimator for the mixed-frequency
stock case (see Koelbl, 2015). In contrast to the high-frequency case, where
under our assumptions the Yule�Walker estimator is asymptotically
equivalent to the maximum likelihood estimator, the mixed-frequency
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XYW estimator is, in general, not equivalent to the mixed-frequency
maximum likelihood estimator (see Example 2).

Remark 5. In order to estimate the asymptotic covariance matrix of the
XYW/GMM estimators as well as the asymptotically optimal weighting
matrix Q�

0; we have to estimate the fourth moment of νtð Þ; unless we
assume that νtð Þ has a Gaussian distribution, where the fourth moment
does not occur. In Koelbl (2015), it is shown that the fourth moment
can be reconstructed on a generic subset of Θ from

vec κð Þ ¼ G2 I npð Þ4 −A⊗A⊗A⊗A

 �− 1

GT
2

� �− 1

vec ψð Þ

where G2 ¼ G⊗G⊗G⊗G and ψ ¼ E yty
T
t ⊗yty

T
t

� �
− vec γ 0ð Þð Þvec γ 0ð Þð ÞT

− γ 0ð Þ⊗γ 0ð Þð Þ−Kn;n γ 0ð Þ⊗γ 0ð Þð Þ:
Remark 6. Until now, the asymptotic results obtained in this section are
only valid for the stock case. Nevertheless, an adaption to the general
case is straightforward: Using an obvious notation and following the
same steps as in the proof of Theorem 2, we obtainffiffiffiffi

T
p

vec Â
g

GMM


 �
− vec Að Þ


 �

¼
ffiffiffiffi
T

p
Ĝ

g

QT


 �†
JP

vec γ̂ z
f f ið Þ


 �
vec γ̂wf ið Þ� �

 !
− vec γz

f f ið Þ

 �

vec γwf ið Þ� �
 ! !

for i ¼ N − p;…;Nþ np− 1: The results concerning the asymptotic beha-
vior of the covariance estimators, that is, Theorem 1 and Lemmas 1�3,
are still valid.

5. SIMULATIONS

In our context the following issues arise: First, the comparison of the XYW
estimators and the MLE-EM estimators. Second, the information loss
caused by mixed-frequency data in relation to high-frequency data. Third,
the information gain obtained by using mixed-frequency data when com-
pared to low-frequency data. It should be emphasized here, that we only
present preliminary results and in order to get a more complete picture
further work is needed.
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It is intuitively clear that the quality of the mixed-frequency estimators
depends on N and on nf, for example, because the number of summands
in Eq. (12) depends on N, see Example 3. Moreover, the quality of the
mixed-frequency estimators depends on the underlying parameters of the
high-frequency model. In particular, if we are close to the (mixed-
frequency) nonidentifiable subset in the parameter space, a large informa-
tion loss due to mixed-frequency data in comparison to high-frequency
data can be expected. One way to measure information loss in our context
would be to compare the (asymptotic) covariances of the MLEs from
mixed-frequency data (MF-MLE) with the (asymptotic) covariances of the
MLEs from high-frequency data (HF-MLE). Another way would be to
compare the one-step-ahead prediction error covariances. This is of parti-
cular importance for comparisons to the low-frequency case, where in gen-
eral identifiability cannot be achieved. In order to demonstrate the effects
of being close to the nonidentifiable subset, we consider a simple example:

Example 1. Assume that p = 1, nf ¼ ns ¼ 1; N = 2, Σν ¼ I2 and the case

of stock variables. The system parameters A1 ¼ aff afs
asf ass

� �
are not

identifiable if and only if they satisfy the equations afs ¼ 0;
asf ¼ 0; ass ≠ 0 (see Anderson et al., 2015). For the models

yt ¼ 0:9 0

asf 0:8

� �
yt− 1 þ νt; νt ∼N 2 0; I2ð Þ ð39Þ

and asf ∈ 0; 0:01; 0:1; 0:25f g; we obtain the following sections of the likeli-
hoods as shown in Fig. 1 where we only vary over ass.

Table 1 reports the mean squared errors (MSE) of the XYW estimator
corresponding to (13) and the MLE-EM, initialized by the XYW estimator,
for the model class described above for four different values of asf. It shows
that also close to the identifiability boundary problems for the estimators
arise. The last two columns show the relative number of hits of the estima-
tors for ass for the intervals − 0:9; − 0:7½ � and 0:7; 0:9½ �; respectively. Note
that, in particular, for the nonidentifiable case asf ¼ 0, the MLE-EM gives
estimates close to the class of equivalent system parameters

0:9 0

0 0:8

� �
;

0:9 0

0 − 0:8

� �� �

62 LUKAS KOELBL ET AL.

D
ow

nl
oa

de
d 

by
 L

uk
as

 K
oe

lb
l A

t 2
3:

14
 1

2 
Ja

nu
ar

y 
20

16
 (

PT
)



Furthermore, in this case the matrix Z0 is singular and in particular the
solution set of Eq. (9) is given as

0:9 d1
0 d2

� �

where d1 and d2 are arbitrary. The MSEs of the XYW estimator for afs are
relatively large compared to the MLE-EM in this case.

Also, on an intuitive level, the memory of the data generating process is
assumedly important for the information loss discussed above. This is
demonstrated in Example 2:

1,
20

0
1,

40
0

1,
60

0
1,

80
0

2,
00

0

–1.6 –0.8 0.0 0.8 1.6

asf = 0
asf = 0.1
asf = 0.25

L T
(θ

)

ass

Fig. 1. Sections of the Likelihood Functions LT θð Þ for Three Different Values of asf.

Table 1. Comparison of XYW and MLE-EM Estimators in Terms of
Mean-Squared Errors and Hits.

asf Estimators MSE âff MSE âsf MSE âfs MSE âss − 0:9; − 0:7½ � 0:7; 0:9½ �

0 XYW 0.131 0.086 25.335 1.698 0.04 0.05

MLE-EM 0.004 0.007 0.001 1.160 0.43 0.51

0.01 XYW 0.124 0.085 11.135 1.589 0.05 0.06

MLE-EM 0.001 0.006 0.001 1.100 0.42 0.55

0.1 XYW 0.002 0.016 0.016 0.061 0.00 0.26

MLE-EM 0.001 0.001 0.001 0.001 0.00 1.00

0.25 XYW 0.001 0.030 0.003 0.028 0.00 0.39

MLE-EM 0.001 0.003 0.001 0.004 0.00 1.00

63VAR Models and Mixed-Frequency Data

D
ow

nl
oa

de
d 

by
 L

uk
as

 K
oe

lb
l A

t 2
3:

14
 1

2 
Ja

nu
ar

y 
20

16
 (

PT
)



Example 2. Consider the following two models:
Model 1:

yt¼
0:9556 0:8611

− 0:6914 0:2174

 !
yt− 1 þ νt; νt ∼N 2 0; I2ð Þ

z0;1¼0:7303± 0:8437i

ð40Þ

Model 2:

yt¼
− 1:2141 1:1514

− 0:9419 0:8101

 !
yt− 1 þ νt; νt ∼N 2 0; I2ð Þ

z0;1 ¼ − 2± 2:4294i

ð41Þ

where z0;1 denotes the roots of the determinant of the autoregressive
polynomial. The correlations of the two processes are depicted in Fig. 2
where the black bars are the unobserved autocorrelations.

In comparing these two models, Table 2 shows the MSE

MSE θ̂

 �

¼ 1

m

Xm
j¼1

X7
i¼1

θi − θ̂
j

i


 �2

for the parameters θ ¼ vec Að ÞT ; vech Σνð ÞT� �T
for T = 500, m ¼ 103 simula-

tion runs, N = 2 and the case of stock variables. Here, HF-YW is the stan-
dard Yule�Walker estimator from high-frequency data, HF-XYW is the

Fig. 2. Autocorrelations of Model 1 (left) and Model 2 (right).
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estimator obtained from inserting the sample second moments obtained from
high-frequency data into the XYW estimator corresponding to the pseudo-
inverse, see Eq. (13). MF-MLE-EM is the estimator described in Section 2.3,
initialized by the MF-XYW estimator, and MF-XYW is the XYW estimator
described in Eq. (13). In addition, as a measure for the information loss, the
MSE relatively to the MSE of the HF-YW estimators are presented. In parti-
cular, the relative MSE of the MF-MLE-EMs show the information loss
due to mixed-frequency data. However, convergence problems due to the
existence of local minima of the likelihood may arise in calculating the
MF-MLE-EM. This can be mitigated by using several starting values.

In Table 3, an analogous comparison based on one-step-ahead predic-
tion errors is given. This table relates the mixed-frequency prediction errors
to the prediction errors obtained by using Yule�Walker equations in the
high-frequency case as well as the prediction errors obtained by using
Yule�Walker equations in the low-frequency case. In the high-frequency
case, the one-step-ahead forecast of yt, t∈ 2Z is based on yt− 1; in the low-
frequency case the forecast of yt, t∈ 2Z; is based on yt− 2 and finally in the
mixed-frequency case the forecast of yt, t∈ 2Z is based on y

f
t− 1; yt− 2:

In Table 4, the absolute and relative Frobenius norms of the asymptotic
covariance matrices of the estimators of the system parameters are

Table 3. Absolute and Relative Root Mean-Squared One-Step-Ahead
Forecasting Errors.

Estimators Model 1 Model 2

Absolute Relative Absolute Relative

LF YW 3.607 1 2.859 1

MF MLE-EM 2.371 0.66 2.857 0.99

XYW 2.388 0.66 34.149 11.94

HF YW 1.995 0.55 1.998 0.70

Table 2. Absolute and Relative Mean-Squared Errors of the System and
Noise Parameters.

Estimators Model 1 Model 2

Absolute Relative Absolute Relative

HF YW 0.007 1 0.009 1

XYW 0.012 1.77 0.272 30.07

MF MLE-EM 0.010 1.53 0.977 107.93

XYW 0.076 11.70 2.977 329.69
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presented. Note that, for instance, HF-XYW k = 1 corresponds to the
high-frequency XYW estimator based on Eq. (15), that is, the XYW equa-
tions are extended with a further lag. We observe that the MF-XYW esti-
mators have larger asymptotic covariances than the MF-MLE. This is the
case even if the optimal weights are chosen for the MF-GMM k = 1
estimator.

In addition, it is clear that for the same high-frequency model increasing
nf will give better results for the mixed-frequency estimators and that the
quality of the parameter estimators will decrease with increasing N. We
demonstrate these effects in Example 3.

Example 3. In order to demonstrate the relations between the MF-XYW
and the MF-MLE-EM estimator as well as the effects of increasing
nf and N for the stock case, we consider the following Model 3 for
T = 500 and m ¼ 103 simulation runs:

yt ¼
0:9154 0:1002 0:2250 − 0:3594
2:7553 1:5950 3:3705 − 5:4438
0:4516 − 0:1998 0:8294 − 0:7917
0:7375 0:1185 0:7489 − 0:6667

0
BB@

1
CCAyt− 1 þ νt;

νt ∼N 4 0; bbT
� � ð42Þ

b ¼
1:1140 0 0 0

− 0:3807 0:6514 0 0

0:3448 − 0:3742 0:3103 0

− 0:1749 − 0:1389 − 0:2241 1:317

0
BB@

1
CCA

z0 ¼ − 0:8783; z1 ¼ − 0:7983; z2;3 ¼ − 0:1557± 0:7614i

Table 4. Absolute and Relative Norms of the Asymptotic Covariance
Matrix of the System Parameters.

Estimators Model 1 Model 2

Absolute Relative Absolute Relative

HF YW 0.421 1 1.416 1

XYW 0.516 1.23 13.690 9.67

XYW k = 1 0.558 1.33 18.830 13.29

GMM k = 1 0.514 1.22 12.674 8.95

MF MLE 0.623 1.48 2.632 1.86

XYW 1.504 3.57 112.907 79.72

XYW k = 1 0.942 2.24 163.694 115.57

GMM k = 1 0.878 2.09 85.775 60.56
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Here, the MF-MLE-EM clearly outperforms the MF-XYW estimator
for all the four cases shown in Table 5. For both estimators, the quality
decreases with increasing N and increases with increasing nf.

Example 4. In this example, we consider again Model 1 and Model 2 as
introduced in Example 2 for T = 500 and m ¼ 103 simulation runs but
now for the case of flow variables, that is, w2t ¼ ys2t þ ys2t− 1: Here, HF-
XYW is the estimator obtained from inserting the sample second
moments obtained from high-frequency data, that is, yft ∈Z and wt ∈Z;
into the XYW estimator corresponding to the pseudo-inverse, see
Eq. (19). As can be seen in Table 6, the estimators for the flow case do
not necessarily lead to better estimates compared to the stock case.

6. OUTLOOK AND CONCLUSIONS

In this paper, we discussed and analyzed estimators for the parameters
of a high-frequency VAR model from mixed-frequency data where the

Table 5. Absolute and Relative Mean-Squared Errors for the Respective
Parameter Estimators for Model 3.

Estimators N = 2, nf ¼ 2 N = 2, nf ¼ 3 N = 3, nf ¼ 3 N = 12, nf ¼ 3

Absolute Relative Absolute Relative Absolute Relative Absolute Relative

MLE-EM 0.230 1 0.014 1 0.015 1 0.984 1

XYW 0.774 3.37 0.381 28.04 1.592 104.74 5.740 5.83

Table 6. Absolute and Relative Mean-Squared Errors of the System and
Noise Parameters.

Estimators Model 1 Model 2

Absolute Relative Absolute Relative

HF YW 0.007 1 0.009 1

XYW 0.020 2.86 0.545 60.56

MF MLE-EM 0.043 6.14 0.123 13.67

XYW 0.070 10.70 1.472 161.77
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low-frequency data are obtained from general linear aggregation schemes
including, in particular, stock and flow data. We considered estimators
obtained from the XYW equations with different weighting matrices as well
as Gaussian maximum likelihood type estimators based on the EM algo-
rithm. The problem of getting estimators resulting in stable systems and
positive (semi)-definite covariances of prescribed rank q has been treated.
Furthermore, we derived the asymptotic distribution of the XYW/GMM
estimators. Finally, we presented a simulation study comparing XYW and
Gaussian maximum likelihood estimators and discussed the information loss
due to mixed-frequency data compared to high-frequency data and the infor-
mation gain if we use mixed-frequency data rather than low-frequency data.

In particular, the dependence of the results obtained from the point in
parameter space for high-frequency AR systems chosen needs further
investigation.
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APPENDIX

The next lemma, see Su and Lund (2011), gives a multivariate version of
Bartlett’s formula.

Lemma 1. Under the assumptions of Section 4, we obtain

lim
T →∞

TCov vec γ̂ z
f f pð Þ


 �
; vec γ̂ z

f f qð Þ

 �
 �

¼ Sp;q þRp;q

for p; q∈Z; where

Rp;q ¼
X∞

k¼−∞
γff kþ q− pð Þ⊗γz

f zf kð Þ

 �

þKnf ;nf γz
f f kþ qð Þ⊗γfz

f

k− pð Þ

 �

Sp;q ¼
X∞

k¼−∞

X∞
r¼−∞

k
f
k− p⊗ ~k

f

k


 �
κ k

f
rþ k− q⊗ ~k

f

rþ k


 �T

and Knf ;nf ; Kn;n are commutation matrices.

Note that in the Gaussian case κ ¼ 0 and thus Sp;q is zero. Using the
idea of the proof of Su and Lund (2011) and taking into account that
γ̂wf qð Þ has only approximately T=N summands, we obtain:

Lemma 2. Under the assumptions of Section 4, we obtain

lim
T→∞

TCov vec γ̂ z
f f pð Þ


 �
; vec γ̂wf qð Þ� �
 �

¼ Sp;q þRp;q

for p; q∈Z; where

Rp;q ¼
X∞

k¼−∞
γff kþ q− pð Þ⊗γz

f w kð Þ

 �

þKnf ;nf γz
f f kþ qð Þ⊗γfw k− pð Þ


 �

Sp;q ¼
X∞

k¼−∞

X∞
r¼−∞

k
f
k− p⊗ ~k

f

k


 �
κ k

f
rþ k− q⊗ ~k

s

rþ k


 �T
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Replacing γ̂wf qð Þ in Lemma 2 by the “high-frequency autocovariance

estimator”, that is, by 1=T
� �XT

t¼1
wt y

f
t− q


 �T
; the result is still valid. The

following result generalizes the result given in Niebuhr and Kreiss (2013)
to the multivariate case.

Lemma 3. Under the assumptions of Section 4, we obtain

lim
T →∞

TCov vec γ̂wf pð Þ� �
; vec γ̂wf qð Þ� �� � ¼ N ~Sp;q þ ~Rp;q

� �

for p; q∈Z; where

~Rp;q¼
X∞

k¼−∞
γff Nkþ q− pð Þ⊗γww kNð Þ� �þKnf ;ns γwf Nkþ qð Þ⊗γfw Nk− pð Þ� �

~Sp;q ¼
X∞

k¼−∞

X∞
r¼−∞

k
f
k− p⊗ ~k

s

k


 �
κ k

f
Nrþ k− q⊗ ~k

s

Nrþ k


 �T

Note that for N = 1 we still obtain Bartlett’s formula for the high-
frequency case. The three lemmas above are needed for the following
proof of Theorem 1.

Proof of Theorem 1. W.l.o.g. let us assume that T is a multiple of N. We

will prove this theorem for ^̂γ
zf f

ið Þ ¼ 1=T
� �XT

t¼1
z
f
t y

f
t− i


 �T
and

^̂γ
wf

ið Þ ¼ N=T
� �XT=N

t¼1
wNt y

f
Nt− i


 �T
instead of γ̂ z

f f ið Þ and γ̂wf ið Þ; respec-

tively, since it can be shown that this change does not influence the
asymptotic properties, see Hannan (1970). In order to apply theorem 14
in Hannan (1970, p. 228), we define a particular blocked process

ut¼ yTNt yTNt−1 ⋯ yTNt− N−1ð Þ
� �T

which satisfies the assumptions of this

theorem. Now applying theorem 14 in Hannan (1970) leads to

ffiffiffiffi
T

N

r
vec γ̂u ið Þ� �

− vec γu ið Þ� �� �
i¼0;…;s

→
d
NnN sþ 1ð Þ 0;Σuð Þ
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where γu ið Þ is the population autocovariance of the process utð Þ for lag i
and γ̂u ið Þ is its sample counterpart with T=N summands. In a last step we
have to find a transformation matrix, say H, which transforms γ̂u to the
desired autocovariances. To obtain this transformation we define

H1¼ 1=N
� �

In2
f

1=N
� �

In2
f
⋯ 1=N
� �

In2
f


 �
and observe that for j=0,…, s

vec ^̂γ
wf

jð Þ

 �

¼ N=T
� �XT=N

t¼1
vec wNt y

f
Nt−j


 �T� �
¼S

wf
j vec γ̂u ið Þ� �� �

i¼ 0;…;s
and

vec ^̂γ
zf f

jð Þ
� �

¼H1

N
T

XT=N
t¼1

vec z
f
Nt y

f
Nt− j


 �T� �

N
T

XT=N
t¼1

vec z
f
Nt− 1 y

f
Nt− 1− j


 �T� �
⋮

N
T

XT=N
t¼1

vec z
f
Nt− N − 1ð Þ y

f
Nt− N − 1ð Þ− j


 �T� �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼H1S
zf f
j vec γ̂u ið Þ� �� �

i¼0;…;s

where S
zf f
j and Sj

wf are selector matrices for lag j. Finally, we can

construct our particular transformation matrix H ¼
�

H1S
zf f
0


 �T
;

S
wf
0


 �T
;…; H1S

zf f
s


 �T
; Swfs
� �T�T

and obtain the desired result

ffiffiffiffi
T

N

s
vec γ̂ z

f f ið Þ

 �

vec γ̂wf ið Þ� �
 !

− vec γz
f f ið Þ


 �
vec γwf ið Þ� �

 ! !
i¼0;…;s

¼
ffiffiffiffi
T

N

s
H vec γ̂u ið Þð Þ− vec γu ið Þ� �� �

i¼0;…;s
→
d N h 0;Σγ

� �

The asymptotic covariance Σγ ¼ HΣuH
T can be derived using Lemmas

1�3. ’
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